Kinetic Monte Carlo method for dislocation migration in the presence of solute
نویسندگان
چکیده
We present a kinetic Monte Carlo method for simulating dislocation motion in alloys within the framework of the kink model. The model considers the glide of a dislocation in a static, three-dimensional solute atom atmosphere. It includes both a description of the short-range interaction between a dislocation core and the solute and long-range solute-dislocation interactions arising from the interplay of the solute misfit and the dislocation stress field. Double-kink nucleation rates are calculated using a first-passage-time analysis that accounts for the subcritical annihilation of embryonic double kinks as well as the presence of solutes. We explicitly consider the case of the motion of a k111l-oriented screw dislocation on a {011}-slip plane in body-centered-cubic Mo-based alloys. Simulations yield dislocation velocity as a function of stress, temperature, and solute concentration. The dislocation velocity results are shown to be consistent with existing experimental data and, in some cases, analytical models. Application of this model depends upon the validity of the kink model and the availability of fundamental properties (i.e., single-kink energy, Peierls stress, secondary Peierls barrier to kink migration, single-kink mobility, solute-kink interaction energies, solute misfit), which can be obtained from first-principles calculations and/or molecular-dynamics simulations.
منابع مشابه
A New Approach for Monte Carlo Simulation of RAFT Polymerization
In this work, based on experimental observations and exact theoretical predictions, the kinetic scheme of RAFT polymerization is extended to a wider range of reactions such as irreversible intermediate radical terminations and reversible transfer reactions. The reactions which have been labeled as kinetic scheme are the more probable existing reactions as the theoretical point of view. The ...
متن کاملKinetic Monte Carlo Study of Biodiesel Production through Transesterification of Brassica Carinata Oil
In the present study, the kinetics of biodiesel production through transesterification of Brassica carinata oil with methanol in the presence of Potassium Hydroxide is investigated by kinetic Monte Carlo simulation. The obtained results from simulation agree qualitatively with the existing experimental data. The kinetics data for each step of suggested mechanism are confirmed by simulation. By ...
متن کاملKinetic Monte Carlo Simulation of Oxalic Acid Ozonationover Lanthanum-based Perovskitesas Catalysts
Kinetic Monte Carlo simulation was applied to investigation of kinetics and mechanism of oxalic acid degradation by direct and heterogeneous catalytic ozonation. La-containing perovskites including LaFeO3, LaNiO3, LaCoO3 and LaMnO3 was studied as catalyst for oxalic acid ozonation. The reaction kinetic mechanisms of each abovementioned catalytic systems has been achieved. The rate constants val...
متن کاملGyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations
The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...
متن کاملEnergy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کامل